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Abstract—Mass spectrometry-based metabolomics is getting 

mature and playing an ever important role in the systematic 

understanding of biological process in conjunction with other 

members of "-omics" family. However, the identification of 

metabolites in untargeted metabolomics profiling remains a 

challenge. In this paper, we propose a support vector machine 

(SVM)-based spectral matching algorithm to combine multiple 

similarity measures for accurate identification of metabolites. 

We compared the performance of this approach with several 

existing spectral matching algorithms on a spectral library we 

constructed. The results demonstrate that our proposed method 

is very promising in identifying metabolites in the face of data 

heterogeneity caused by different experimental parameters and 

platforms. 

I. INTRODUCTION 

ETABOLOMICS is the comprehensive and quantitative 

assessment of low molecular weight analytes 

(<1500Da) that define the metabolic status of an organism 

under a given condition [1]. In complementation with 

genomics, transcriptomics, and proteomics, the direct 

measurement of metabolite expression is essential in the 

systematic understanding of biological process.  

Metabolomics is increasingly enjoying widespread 

applications in areas such as functional genomics, 

identification of the onset and progression of disease, 

pharmacogeniomics, nutrigenomics, and systems biology 

[2-5].  

Because of its sensitivity and coverage, mass spectrometry 

(MS) is a favorable technology for metabolomics study. 

Chromatography is often coupled to mass spectrometer to 

achieve further separation of the sample.  Both gas 

chromatography (GC) and liquid chromatography (LC) have 

been used in metabolomics studies [2, 6].  

One major bottleneck for current MS-based metabolomics 

is the identification of metabolites. In untargeted 

metabolomics, each detected compound is represented by a 

triplet of m/z, retention time and intensity. A common 

approach currently used for metabolite identification is to 

search the m/z value of detected peaks against a database (or 

databases). Several databases have been assembled during the 

past years [7-9]. The molecules in the database with a 
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molecular weight within a specified tolerance to the query 

m/z value are retrieved as putative identifications of the 

compounds. However, there are some drawbacks for the 

mass-based searching method. First, it has been shown that 

even with an accuracy of 1ppm, which is a remarkably higher 

accuracy than most of the available platforms can achieve, it 

is still not sufficient for unambiguous metabolite 

identification [10]. Second, the isomers which have the same 

elemental composition but different structures have the same 

molecular weight. Thus, mass-based metabolite identification 

methods cannot discriminate isomers. To improve the 

identification of metabolites, additional information is needed 

such as retention time or fragment pattern. The latter is 

obtained by selecting a particular m/z from the first MS scan. 

The selected molecule is fragmented through collision 

induced dissociation. The resulting fragments are measured 

by the second MS scan. This approach provides us with a 

unique fingerprint for the compound. The fingerprint can be 

used for identification by comparing it with MS/MS spectra 

acquired from authentic compounds. Databases have begun to 

assemble the MS/MS spectra for authentic compounds using 

various platforms [9, 11]. 

To identify the correct metabolite from a large volume of 

MS/MS spectra, a proper comparison or scoring scheme is 

needed. The National Institute of Standards and Technology 

(NIST) has developed a scoring algorithm for compound 

identification by GC-MS [12]. It has also been modified for 

LC-MS-MS spectra matching by MassBank [13]. Another 

similar spectral matching algorithm was previously 

developed for peptide identification and integrated into the 

open-source software SpectraST [14]. While these algorithms 

perform well for spectra generated in highly-controlled 

environment, their performances degrade when spectra are 

generated from different labs using different platforms or 

with different parameters. Since it is costly and impractical to 

acquire the spectra under all possible conditions, robust 

spectral matching algorithms are needed for a general spectral 

library to be useful. 

In this paper, we collected MS/MS spectra for 21 

metabolites from both our in-house data and publicly 

available data from the Human Metabolite Database 

(HMDB). We utilized a support vector machine (SVM) to 

incorporate both peak and profile similarity measures for 

spectral matching. We compared the identification 

performance of our proposed approach with other algorithms 

(NIST, MassBank, and SpectraST) and the correlation 

method. We observed that the proposed approach can achieve 

7% to 10% improvement on identification performance. 
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II. SPECTRA MATCHING ALGORITHMS 

During the past decade, several spectral matching 

algorithms have been developed for various applications and 

platforms [13-16]. While there are multiple forms of scoring 

algorithms for spectral matching, they are primarily some 

variations of dot product. The dot product of a query spectrum 

and a library spectrum intrinsically measures the correlation 

between the two spectra. The library spectrum which has the 

highest correlation with the query spectrum is considered to 

be the right identification.  

While correlation generally performs well when the spectra 

are from highly controlled experiment, it will degrade 

remarkably in real situation when the spectra are from 

different sources. The underlying reason is that different 

platforms have different analyzing and detection mechanisms 

which cause the intensity of fragments in MS/MS spectra to 

vary. Also experimental parameters such as collision energy 

have a significant impact on the intensity profile of a 

fragment spectrum. An example is shown in Fig. 1, where two 

spectra of the same metabolite exhibit different spectral 

profiles when acquired under different conditions. 

 

Fig. 1. The MS/MS spectra for metabolite ADP from the in-house data (left 

panel) and from HMDB database (right panel).  

As a result, when there is a high heterogeneity of data, 

correlation or dot product alone is not sufficient to measure 

the similarity between two spectra. Other measures of 

similarity are needed. From the example given in Fig. 1, we 

observe that while the profiles of the two spectra are not 

similar, they share peaks appearing at the same positions over 

the m/z range. To take advantage of this observation, we 

propose to utilize "peak similarity", which measures the 

impact of the common peaks on the spectral comparison. 

Specifically, we define the following two measures of peak 

similarity: 
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N  is the normalized number of common peaks 

between the two spectra and 
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E  is the total energy of 

common peaks. 
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U
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are the length of the peak list of query spectrum and library 

spectrum respectively. 
&U L

N  is the length of the common 

peaks appearing in both spectra. 
We propose to combine the above two peak similarity 

measures with a measure of profile similarity. To measure the 

profile similarity of two spectra, we use the Pearson 

correlation coefficient between the spectra. The correlation 

coefficient must be calculated between the vectors of the 

same length. Since the lengths of two spectra (peak list) are 

rarely equal, the spectra must be re-sampled before the 

calculation. We use the peak preserving re-sampling to 

re-sample the spectra [17]. The signal is re-constructed using 

a Gaussian kernel and the intensity at an m/z value is the 

maximum intensity of any contributing peaks. The Pearson 

correlation is then calculated using the re-sampled spectra. 

The final identification is based on the overall 

consideration of both profile and peak similarity measures. 

We formulate the identification problem as a classification 

problem. Each comparison between two spectra is a sample 

for classification while the similarity measures are the 

features of the sample. And the label is binary: the sample is 

positive for comparison between the same metabolites while 

negative for comparison between different metabolites. The 

proposed metabolite identification algorithm is illustrated in 

Fig. 2. Pair-wise comparisons are performed between query 

spectrum and the spectrum from the library. The normalized 

number of common peaks, the total energy of common peaks, 

and the Pearson correlation are utilized to train a SVM 

classifier to decide if the two spectra represent the same 

metabolite. 
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Fig. 2. The algorithm diagram for the SVM-based approach. 

In [18], a similar scheme was used for peptide 

identification, however, the author used linear discriminant 

function to combine the multiple similarity measures. By 

examining the data we have, we think the separating plane for 

positive and negative samples should be non-linear. The 

reason is that different similarity measures have different 

dynamic ranges and there is no explicit way to normalize 

them to make the data linearly separable. SVM with radial 

basis kernel function is a convenient and popular way to solve 

this kind of non-linear separation problems [19].  

The metabolite identification system is intrinsically an 

information retrieval system. One common characteristics of 

information retrieval system is the imbalance of the samples. 

In the study, more negative samples are present than positive 
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samples. It is well-known that such imbalance will have an 

adversary impact on the performance of SVM classifier [20]. 

Several ways have been devised to correct for sample 

imbalance, including re-sampling (either down-sampling or 

over-sampling), cost-sensitive learning or ensemble learning 

[20-22]. Here, we use a random down-sampling approach on 

the majority group to acquire a balanced dataset to train the 

SVM classifier.  

III. EXPERIMENT RESULTS 

A. Data acquisition 

The in-house data consisted of 21 metabolites with 

molecular weights ranging from 107 to 428 Da. For each 

metabolite, authentic compound was purchased to acquire the 

MS/MS spectra using an ultra performance liquid 

chromatography quadrupole time of flight (UPLC-QTOF, 

Waters) instrument. The collision energy was tuned for each 

individual compound to acquire MS/MS spectra with a 

reasonable number of fragments. For some of the metabolites, 

more than one spectrum was acquired. Totally, our in-house 

data comprised of 45 MS/MS spectra representing 21 

metabolites. The MS/MS spectra for the same 21 metabolites 

were also retrieved from the HMDB database. The spectra 

were acquired using a high performance liquid 

chromatography triple quadrupole (HPLC-QqQ, Waters) 

instrument with a collision energy of 10eV. For each 

metabolite, only one MS/MS spectrum was available in 

HMDB. 

B. Experiment design 

To evaluate the performance of different algorithms, a 

3-fold cross validation was performed. The 21 metabolites 

were randomly divided into two groups. In the training set, 

we had spectra for 14 metabolites from both the in-house data 

and the HMDB database. In the testing set, we had spectra for 

7 metabolites from the in-house data and the HMDB 

database. The purpose of this stratification is to make sure 

that we have some degree of data heterogeneity in both 

training and testing sets. The training set was used to train a 

model to discriminate positive samples and negative samples. 

For a typical scoring method that uses only one variable to 

measure spectral similarity, the model is a threshold for the 

score, which maximizes the F-measure in the training set. For 

the proposed method, the model is a SVM classifier trained 

on the training set. The trained model was applied to the 

testing set to evaluate the identification performance. This 

procedure was repeated 100 times to measure the 

performance of algorithms. In addition to the four algorithms 

previously introduced, we used the Pearson correlation 

coefficient as a score for performance comparison. 

Because we were particularly interested in evaluating the 

performance of various metabolites identification algorithms 

on heterogeneous datasets, we carried out two experiments. 

In Experiment I, we conducted identification using data from 

different sources. Specifically, the query spectra from the 

in-house data were searched against a library composed of 

spectra from HMDB, or vice versa. In Experiment II, spectra 

from different sources were mixed together to form a mixed 

dataset and a spectrum in the dataset was searched against 

other spectra in the mixed dataset. 

Because the data are highly imbalanced with much more 

negative samples, accuracy only is not enough to measure the 

identification performance. Thus we utilized F-measure 

notion from information retrieval context to measure the 

performances of the algorithms, which is defined as 

 
2 * Precision*Recall

Precision Recall
F 


 , 

TP TP
Precision= , Recall=

TP+FP TP+FN

 where TP, FP, FN are the number of true positive, false 

positive, and false negative, respectively. Since we have more 

negative samples than positive samples and we are mainly 

concerned about the correct identification of positive samples. 

Therefore, in our study, F-measure is more suitable for 

performance evaluation than accuracy. 

C. Experiment results 

The Pearson correlation coefficients for positive and 

negative samples in Experiments I and II are shown in Figs. 3 

and 4, respectively. These figures illustrate the necessity to 

induce more similarity measures in addition to correlation. 

The comparisons between different metabolites (negative 

samples) generally show very small correlation coefficients 

as expected. However, the comparisons between the same 

metabolites (positive samples) span a large range of 

correlation coefficients. For some of them, the spectral 

profiles from different platforms and experiments are similar, 

while for others there is a large variation between the spectra. 

 

Fig. 3. Correlation coefficients for comparison between same metabolites 

(left panel) and different metabolites (right panel) in Experiment I.  

 

Fig. 4. Correlation coefficients for comparison between same metabolites 

(left panel) and different metabolites (right panel) in Experiment II.  

Table I presents the accuracy and F-measure of five 

spectral matching algorithms. Among the five algorithms, 

SVM gives the best performance on both accuracy and 

F-measure. While the accuracies of other algorithms are 
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comparable, SVM achieved about 7% to 10% increase on 

F-measure. SVM also outperforms the other algorithms in 

terms of the area under the curve (AUC) of the 

precision-recall graph as shown Table I, Fig. 5, and Fig. 6.  

Table I. The performance of spectral matching algorithms 

Experiment Method F-measure (%) Accuracy (%) AUC (%) 

I 

NIST 74.0 93.8 79.7 

MassBank 72.1 93.3 83.5 

SpectraST 69.3 92.1 72.0 

Correlation 73.2 93.2 75.1 

SVM 80.7 94.6 86.9 

II 

NIST 77.7 95.3 84.3 

MassBank 77.3 95.2 86.1 

SpectraST 75.7 94.6 79.7 

Correlation 76.7 95.1 87.1 

SVM 85.1 96.3 90.1 

 

Fig. 5. Precision-recall graph for the spectral matching algorithms in 

Experiment I. 

 

Fig. 6. Precision-recall graph for the spectral matching algorithms in 

Experiment II. 

IV. CONCLUSION 

In this paper, we propose two metrics that measure the 

similarity of peaks present in two MS/MS spectra. The two 

metrics are combined with correlation through SVM. We 

demonstrate the ability of this approach to give more accurate 

identification of metabolites by comparing it with several 

other spectral matching algorithms. We observe that the dot 

product alone is not sufficient for identification in 

heterogeneous data. Our results indicate that the proposed 

approach is very promising and outperforms the existing 

spectral matching algorithms for metabolite identification. 
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