%% Description
% Data set: glycomics
% Method: multi-profile alignment
%
% ----- data_matrix_glycomics.mat -----
% glyData: binned matrix 23 x 1000 x 3000 (sample x RT points x mz bins)
% timeRes: registered time index
% nbSamp: # of samples (23)
% nbRT: # of RT points (1000)
% nbMZ: # of mz bins (3000)
% mzLow: mz lower bound for each bin
% mzHi: mz upper bound for each bin
%% Required utilities
% ----- attached functions -----
% coda() to calculate MCQ values
% priorRatioLn() to calculate the prior ratio (in log) when GP prior is not available
%
% ----- functions from elsewhere -----
% inv_posdef(), randnorm(), scale_rows(), ndsum() from Tom Minka's Lightspeed toolbox,
% downloaded at http://research.microsoft.com/en-us/um/people/minka/software/lightspeed/
% randraw() from File Exchange at MATLAB Central,
% downloaded at http://www.mathworks.com/matlabcentral/fileexchange/7309
% bsplinebasis() from Scott Gaffney's CCToolbox,
% downloaded at http://www.ics.uci.edu/~sgaffney/software/CCT/
% apcluster() by Frey Lab,
% downloaded at http://www.psi.toronto.edu/index.php?q=affinity%20propagation
%% Load the glycomic data set
clear all; close all; clc;
load data_matrix_glycomics.mat
[nbSamp,nbRT,nbMZ] = size(glyData);
%% 1st-phase screening based on MCQ
binICs = glyData;
winQ = 3;
% considering the worst case
mcq = coda(squeeze(binICs(1,:,:)),winQ);
for i = 2:nbSamp
mcq = min([mcq; coda(squeeze(binICs(i,:,:)),winQ)],[],1);
end
idxQ = find(mcq>=0.9);
binQICs = binICs(:,:,idxQ);
mcqQ = mcq(idxQ);
nbQBin = numel(idxQ);
% scale the remaining chromatograms (profile is more important than abosolute amount)
for b = 1:nbQBin
for i = 1:nbSamp
binQICs(i,:,b) = binQICs(i,:,b)./ndsum(binQICs(i,:,b),2);
end
end
%% 2nd-phase screening based on reproducibility among samples (with xcorr)
xcMat = zeros(nbSamp,nbSamp,nbQBin);
xcAve = zeros(1,nbQBin);
rootE = zeros(1,nbSamp); % root of energy used for normalization
winX = 100;
for b = 1:nbQBin
for i = 1:nbSamp
rootE(i) = sqrt(sum((binQICs(i,:,b).*binQICs(i,:,b))));
xcMat(i,i,b) = 1;
end
for i = 1:nbSamp
for j = i+1:nbSamp
tmpXC = xcorr(binQICs(i,:,b),binQICs(j,:,b),winX);
idxXC = maxind(tmpXC);
if isempty(idxXC)
xcMat(i,j,b) = 0;
else
idxXC(find(tmpXC(idxXC)<0.5*max(tmpXC(idxXC)))) = [];
[~,idxx] = min(abs(idxXC-(winX+1)));
xcMat(i,j,b) = tmpXC(idxXC(idxx))/(rootE(i)*rootE(j));
end
xcMat(j,i,b) = xcMat(i,j,b);
end
end
xcAve(b) = (ndsum(xcMat(:,:,b),1:2)-nbSamp)/(nbSamp*nbSamp-nbSamp);
end
idxC = find(xcAve>=0.85);
binQCICs = binQICs(:,:,idxC);
mcqQC = mcqQ(idxC);
nbQCBin = numel(idxC);
xcAveQC = xcAve(idxC);
%% identify exemplars using affinity propagation (correlation coeff. as similarity)
ccQC = zeros(nbQCBin);
for b = 1:nbSamp
ccQC = ccQC + corr(squeeze(binQCICs(b,:,:)));
end
ccQC = ccQC/nbSamp;
sim = zeros(nbQCBin*nbQCBin-nbQCBin,3);
cnt = 1;
for b = 1:nbQCBin
for p = [1:b-1,b+1:nbQCBin]
sim(cnt,1)=b; sim(cnt,2)=p; sim(cnt,3)=ccQC(b,p);
cnt=cnt+1;
end
end
prefSim = mean(sim(:,3));
[idxExmp,~,~,~] = apcluster(sim,prefSim);
nbExmp = numel(unique(idxExmp));
exmpICs = binQCICs(:,:,unique(idxExmp));
%% agglomerative clustering of the exemplars (based on overlapping level)
tmpNum = nbExmp;
tmpICs = exmpICs;
tmpIdx = cell(1,tmpNum);
for b = 1:tmpNum
tmpIdx{b} = b;
end
for l = 1:nbExmp-1
tmpDis = zeros(tmpNum*(tmpNum-1)/2,3);
cnt = 1;
for b = 1:tmpNum-1
for p = b+1:tmpNum
tmpDis(cnt,1) = b;
tmpDis(cnt,2) = p;
for i = 1:nbSamp
tmpDis(cnt,3) = tmpDis(cnt,3) + sum(min(squeeze(tmpICs(i,:,[b,p])),[],2));
end
cnt = cnt+1;
end
end
[layer(l).ovp, idxPair] = min(tmpDis(:,3));
tmpICs(:,:,tmpDis(idxPair,1)) = tmpICs(:,:,tmpDis(idxPair,1))+tmpICs(:,:,tmpDis(idxPair,2));
tmpICs(:,:,tmpDis(idxPair,2)) = [];
tmpIdx{tmpDis(idxPair,1)} = [tmpIdx{tmpDis(idxPair,1)},tmpIdx{tmpDis(idxPair,2)}];
tmpIdx(tmpDis(idxPair,2)) = [];
tmpNum = tmpNum-1;
layer(l).num = tmpNum;
layer(l).idx = tmpIdx;
end
nbEIC = 4; % pre-defined value
EICs = zeros(nbSamp,nbRT,nbEIC);
for b=1:nbEIC
EICs(:,:,b) = ndsum(exmpICs(:,:,layer(numel(layer)-nbEIC+1).idx{b}),3);
end
EICs = EICs*10; % scale to a range of [0,10]
EICs = permute(EICs,[2 1 3]);
timeGrid = (1:nbRT)';
clear chrom glyData agg aggPair bb binEdge binICs binQCICs binQICs ccQC cnt ...
idxAgg idxC idxExmp idxQ idxXC idxx mcq mcqQ mcqQC ...
mzHi mzLow nbExmp nbMZ nbBin nbQBin nbQCBin p prefAgg prefSim rootE ...
sim tmpXC winQ winX xcAve xcAveQC xcMat xcMin xcMinQC i j
%% B-spline
order = 3;
timeExt = timeGrid;
denKnotReg = 0.5; % density of knots for prototype function (0.25--0.75)
denKnotMap = 0.025; % density of knots for mapping function (<= 0.1)
ptStart = timeExt(1);
ptEnd = timeExt(end);
lenBS = length(timeExt);
nbKnotReg = ceil(lenBS*denKnotReg);
knotsReg = unique(linspace(ptStart,ptEnd,nbKnotReg));
knotsReg = [knotsReg(1)*ones(1,order) knotsReg(2:(end-1)) ...
knotsReg(end)*ones(1,order)];
nbReg = length(knotsReg)-order;
BSReg = bsplinebasis(knotsReg,order,timeExt);
muReg = zeros(nbReg,1);
nbMap = ceil((timeGrid(end)-timeGrid(1))*denKnotMap);
varKnot = unique(round(linspace(timeGrid(1),timeGrid(end),nbMap)))';
for i = 1:nbSamp
map(i).coeff = varKnot;
map(i).acpt = zeros(4,nbRT-1);
end
%% Hyperparameters
hyMuScale = 1;
hyMuShift = 0;
hyTauScale = 1/0.5;
hyTauShift = 1/0.5;
hyShapeScale = 0.1;
hyRateScale = 1;
hyShapeShift = 0.1;
hyRateShift = 1;
hyShapePsi = 0.1;
hyRatePsi = 1;
hyShapeEpsilon = 0.1;
hyRateEpsilon = 0.2;
hyStd = 0.1;
SigmaReg = diag([2*ones(1,nbReg-1) 1],0) + diag(-1*ones(1,nbReg-1),1) ...
+diag(-1*ones(1,nbReg-1),-1);
%% MCMC setting/initialization
nbMCMC = 15000;
% Space allocation MCMC runs
spMuScale = zeros(1,nbMCMC); % a0
spMuShift = zeros(1,nbMCMC); % c0
spScale = zeros(nbSamp,nbMCMC); % ai
spShift = zeros(nbSamp,nbMCMC); % ci
spTauScale = zeros(1,nbMCMC); % 1/var(ai)
spTauShift = zeros(1,nbMCMC); % 1/var(ci)
spTauEpsilon = zeros(1,nbMCMC); % 1/var(ei)
spTauPsi = zeros(1,nbMCMC); % 1/var for regression coeff
spReg = zeros(nbReg,nbEIC,nbMCMC); % regression coeff (prototype function)
spMap = zeros(nbMap,nbSamp,nbMCMC);% mapping function coeff
% Initial value assignment
spMuScale(1) = hyMuScale;
spMuShift(1) = hyMuShift;
spScale(:,1) = hyMuScale*ones(nbSamp,1);
spShift(:,1) = hyMuShift*ones(nbSamp,1);
spTauScale(1) = hyShapeScale/hyRateScale;
spTauShift(1) = hyShapeShift/hyRateShift;
spTauEpsilon(1) = hyShapeEpsilon/hyRateEpsilon;
spTauPsi(1) = hyShapePsi/hyRatePsi;
spMap(:,:,1) = repmat(varKnot,1,nbSamp);
% Metropolis step
stepMH1 = 3;
stepMH2 = 10;
%% Run MCMC
BSTilt = repmat(BSReg,nbSamp,1); % BS_i (space allocation)
vecScale = ones(nbSamp*nbRT,1);
vecShift = ones(nbSamp*nbRT,1);
vecEICs = zeros(nbSamp*nbRT,nbEIC);
for b = 1:nbEIC
vecEICs(:,b) = reshape(EICs(:,:,b),nbSamp*nbRT,1);
end
rng default % reset the random seed
tic % initialize timer
for mc = 2:nbMCMC
% Matrix manipulation
idxMat = interp1(varKnot, spMap(:,:,mc-1), timeGrid);
BSTilt = interp1(timeExt,BSReg,idxMat(:));
repScale = repmat(spScale(:,mc-1)',nbRT,1);
vecScale = repScale(:);
SBSTilt = scale_rows(BSTilt,vecScale); % a_i*BS_i from lightspeed
repShift = repmat(spShift(:,mc-1)',nbRT,1);
vecShift = repShift(:);
%% Gibbs sampling goes below
% regression coefficients of prototype function
invCovReg = SigmaReg*spTauPsi(mc-1);
tmpCov = inv_posdef(invCovReg + (SBSTilt'*SBSTilt)*spTauEpsilon(mc-1)); % from lightspeed
for b = 1:nbEIC
tmpMuVec = tmpCov*SBSTilt'*(vecEICs(:,b)-vecShift)*spTauEpsilon(mc-1);
spReg(:,b,mc) = randnorm(1,tmpMuVec,[],tmpCov); % from lightspeed
end
% a0
tmpVar = (hyTauScale + nbSamp*spTauScale(mc-1))^(-1);
tmpMu = tmpVar*(hyMuScale*hyTauScale + sum(spScale(:,mc-1))*spTauScale(mc-1));
spMuScale(mc) = tmpMu + sqrt(tmpVar)*randn(1);
% c0
tmpVar = (hyTauShift + nbSamp*spTauShift(mc-1))^(-1);
tmpMu = tmpVar*(hyMuShift*hyTauShift + sum(spShift(:,mc-1))*spTauShift(mc-1));
spMuShift(mc) = tmpMu + sqrt(tmpVar)*randn(1);
% (ai, ci)
for i = 1:nbSamp
tmpMat = [reshape(BSTilt((i-1)*nbRT+1:i*nbRT,:)*spReg(:,:,mc),nbRT*nbEIC,1), ...
ones(nbRT*nbEIC,1)];
tmpCov = inv_posdef(diag([spTauScale(mc-1) spTauShift(mc-1)]) + spTauEpsilon(mc-1)*tmpMat'*tmpMat); % from lightspeed
tmpMuVec = tmpCov*(diag([spTauScale(mc-1) spTauShift(mc-1)])*[spMuScale(mc);spMuShift(mc)]...
+ spTauEpsilon(mc-1)*tmpMat'*reshape(EICs(:,i,:),nbRT*nbEIC,1));
tmpSp = randnorm(1,tmpMuVec,[],tmpCov); % from lightspeed
spScale(i,mc) = tmpSp(1);
spShift(i,mc) = tmpSp(2);
end
% 1/var(ei)
tmpShape = hyShapeEpsilon + 0.5*nbRT*nbSamp*nbEIC;
repScale = repmat(spScale(:,mc)',nbRT,1);
vecScale = repScale(:);
SBSTilt = scale_rows(BSTilt,vecScale); % from lightspeed
repShift = repmat(spShift(:,mc)',nbRT,1);
vecShift = repShift(:);
vecTICHat = reshape(SBSTilt*spReg(:,:,mc),nbRT*nbSamp*nbEIC,1) + repmat(vecShift,nbEIC,1);
tmpRate = hyRateEpsilon + 0.5*(vecEICs(:)-vecTICHat)'*(vecEICs(:)-vecTICHat);
spTauEpsilon(mc) = gamrnd(tmpShape,1/tmpRate);
% 1/var(ai)
tmpShape = hyShapeScale + 0.5*nbSamp;
tmpRate = hyRateScale + 0.5*sum((spScale(:,mc)-spMuScale(mc)).^2);
spTauScale(mc) = gamrnd(tmpShape,1/tmpRate);
% 1/var(ci)
tmpShape = hyShapeShift + 0.5*nbSamp;
tmpRate = hyRateShift + 0.5*sum((spShift(:,mc)-spMuShift(mc)).^2);
spTauShift(mc) = gamrnd(tmpShape,1/tmpRate);
% 1/var for the prototype function
tmpShape = hyShapePsi + 0.5*nbReg*nbEIC;
tmpMat1 = spReg(:,1,mc)*spReg(:,1,mc)';
for b=2:nbEIC
tmpMat1 = tmpMat1 + spReg(:,b,mc)*spReg(:,b,mc)';
end
tmpRate = hyRatePsi + 0.5*trace(tmpMat1*SigmaReg);
spTauPsi(mc) = gamrnd(tmpShape,1/tmpRate);
%% Metropolis-Hastings algo
for i = 1:nbSamp
tmpMap = map(i).coeff;
tmpIdx = interp1(varKnot,tmpMap,timeGrid);
tmpBSReg = interp1(timeExt,BSReg,tmpIdx);
for b = 1:nbEIC
tmpEICs(:,b) = spScale(i,mc)*tmpBSReg*spReg(:,b,mc) + spShift(i,mc);
end
tmpEvaln = -0.5*spTauEpsilon(mc)* ndsum((squeeze(EICs(:,i,:))-tmpEICs).^2, [1 2]);
% generating blocks
rInd = randi(3);
switch rInd
case 1
rBound = 1;
case 2
rBound = 0.5;
case 3
rBound = 0.25;
end
idxBound = find(rand(1,nbMap-3)<rBound)+2; % block ends at nbMap-1
blkMH = [2,idxBound; idxBound-1,nbMap-1];
nbBlock = size(blkMH,2);
rStep = randi(2);
switch rStep
case 1
stepMH = stepMH1;
case 2
stepMH = stepMH2;
end
if mc <= 200
stepMH = 30; % propose big move in early MCMC iterations
end
for m = 1:nbBlock
tmpMapProp = tmpMap;
% identify moveable range
tmpLB = tmpMap(blkMH(1,m)-1)-tmpMap(blkMH(1,m));
tmpUB = tmpMap(blkMH(2,m)+1)-tmpMap(blkMH(2,m));
% uniform proposal reflective on the boundary
unBound = true;
stepProp = stepMH*(2*rand(1)-1);
while unBound
if stepProp > tmpUB
stepProp = 2*tmpUB-stepProp;
elseif stepProp < tmpLB
stepProp = 2*tmpLB-stepProp;
else
unBound = false;
end
end
tmpMapProp(blkMH(1,m):blkMH(2,m)) = tmpMapProp(blkMH(1,m):blkMH(2,m)) + stepProp;
pRatioln = priorRatioLn(tmpMap, varKnot, blkMH(1,m):blkMH(2,m), stepProp, hyStd);
tmpIdx = interp1(varKnot,tmpMapProp,timeGrid);
tmpBSRegProp = interp1(timeExt,BSReg,tmpIdx);
for b = 1:nbEIC
tmpEICs(:,b) = spScale(i,mc)*tmpBSRegProp*spReg(:,b,mc) + spShift(i,mc);
end
tmpEvaPropln = -0.5*spTauEpsilon(mc)* ndsum((squeeze(EICs(:,i,:))-tmpEICs).^2, [1 2]);
lRatioln = tmpEvaPropln-tmpEvaln;
switch rStep
case 1
map(i).acpt(2,varKnot(blkMH(1,m):blkMH(2,m))-1) = map(i).acpt(2,varKnot(blkMH(1,m):blkMH(2,m))-1) + 1;
case 2
map(i).acpt(4,varKnot(blkMH(1,m):blkMH(2,m))-1) = map(i).acpt(4,varKnot(blkMH(1,m):blkMH(2,m))-1) + 1;
end
if rand(1) < min([1, exp(lRatioln+pRatioln)])
tmpMap = tmpMapProp;
tmpEvaln = tmpEvaPropln;
switch rStep
case 1
map(i).acpt(1,varKnot(blkMH(1,m):blkMH(2,m))-1) = map(i).acpt(1,varKnot(blkMH(1,m):blkMH(2,m))-1) + 1;
case 2
map(i).acpt(3,varKnot(blkMH(1,m):blkMH(2,m))-1) = map(i).acpt(3,varKnot(blkMH(1,m):blkMH(2,m))-1) + 1;
end
end
end
map(i).coeff = tmpMap;
spMap(:,i,mc) = tmpMap;
end
if rem(mc,500)==0
fprintf('Iteration %d, time %d \r', mc,toc/60);
end
end
%% Retention time correction
postKnot = ndsum(spMap(:,:,5001:15000),3)/10000; % initial 5000 samples as burn-in
postMap = interp1(varKnot, postKnot, timeGrid);
crtRT = zeros(nbRT,nbSamp);
for i = 1:nbSamp
crtRT(:,i) = interp1(timeGrid,timeRes,postMap(:,i),'pchip');
end
for i = 1:nbSamp
in_text = ['sima\G1_' num2str(i) '.txt'];
out_text = ['mp4\G1_' num2str(i) '.txt'];
tmp = textread(in_text);
newRT = interp1(timeRes,crtRT(:,i),tmp(:,4),'pchip');
tmp(:,4) = round(newRT*100)/100;
dlmwrite(out_text, tmp, 'delimiter', '\t', 'precision', 10, 'newline', 'pc');
end